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H higher order theory for two-dimensional turbulent boundary-layer flow of 
a compressible fluid past a plane wall is formulated, for moderately large values 
of the Reynolds number, by the method of matched asymptotic expansions. 
The parameters (y - 1)  MZ, and the molecular Prandtl number are assumed to 
be of order unity. The analysis deals with the set of Reynolds equations of mean 
motion (which are underdetermined without an additional set of closure 
hypotheses) and assumes that the non-dimensional fluctuations in velocity, 
temperature and density are of order U, (friction velocity divided by free- 
stream velocity a t  some designation point), while fluctuations in pressure are 
of order U:. The first-order results of the present study lead to asymptotic 
laws for velocity and temperature distributions which correspond to the law of 
the wall, logarithmic law and defect law, and also to  skin friction and heat- 
transfer laws. It turns out that the first-order defect law depends upon the 
gradient of entropy and stagnation enthalpy and the law of the wall is inde- 
pendent of viscous dissipation. The second-order terms of the present work 
(accounting for mean convection due to turbulent mass flux, viscous dissipation 
in the inner flow and displacement effects in the outer flow) describe the necessary 
corrections to first-order terms due to low Reynolds number effects. In  the overlap 
region the second-order results, for the law of the wall and the defect law, show 
bilogarithmic terms along with logarithmic terms. 

1. Introduction 
The problem of the turbulent boundary layer has attracted wide attention. 

It is well known that the study of turbulent boundary layers, indeed that of 
all turbulent flows, is handicapped by the problem of closure. Despite numerous 
attempts, a closure hypothesis which describes the essential physics in a reason- 
ably general fashion has yet to  be constructed (Lumley 1970) and therefore 
analyses based upon closure hypotheses which are not fully satisfactory are 
bound to be subject to some uncertainty. Much of what is known about in- 
compressible turbulent boundary layers stems from experiments. Using dimen- 
sional and similarity arguments, general empirical correlations - like the law of 
the wall, logarithmic law in the overlap region, velocity defect law, law of the 
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wake and skin friction law (see Rotta 1962)-are obtained. However, for the 
temperature profile in incompressible flow very few measurements have been 
made, compared with the number of measurements available for velocity profiles 
(similar comments apply to empirical correlations for the temperature profile) ; 
most authors have studied the relation of heat transfer to  skin friction and 
a good review is available in Schlichting (1968). For a compressible flow, too, 
very few measurements have been made when compared with the number for 
incompressible flow. As a result no systematic attempts have been made to find 
general empirical correlations. 

These classical empirical laws (law of the wall, etc.), however, are necessarily 
approximate and small systematic departures are known in some cases. For 
example, for incompressible boundary-layer flow Rotta (1962, p. 101) finds 
a higher order term in the velocity defect law and skin friction law. Recent 
measurements of Simpson ( 1  970) a t  lower Reynolds number also exhibit such 
higher order effects. These higher order effects seems to be of the order of the 
non-dimensional friction velocity U, = u,lUm (here u, = (rw/pw)* is the friction 
velocity, r, the local shear stress a t  the wall, pw the local density a t  the wall and 
U, the free-strcamvelocity). For a compressible flow, too, Rotta (1960)has shown 
that the law of the wall depends upon the so-called friction Mach number M,. It 
is shown later that, for a given free-stream Mach number M,, the friction Mach 
number 31, is of order U,. Furthermore, the measurements of Lobb, Winkler 
& Persh (quoted by Schlichting 1968, figure 23.11) and the inspection of data from 
various sources by Bradshaw & Ferriss (197 1) show that the dependence of the 
law of wall on N, is weak up to an Jfm of 5. I n  view of the fact that U, --f 0 as 
R + co i t  is preferable to regard the classical empirical laws as asymptotic laws 
in the sense that these become exact as the Reynolds number approaches infinity. 
The departure from these laws a t  lower Reynolds number are the higher 
order effects. The main aim of the present work is to  formulate a higher order 
theory for compressible turbulent boundary-layer flow of a perfect gas with con- 
stant specific heats when (y  - 1) M2, and molecular Prandtl number are of order 
unity. The higher order analysis for an incompressible flow is described in the 
appendix. For laminar flow, such a higher order theory has been formulated by 
Van Dyke ( 1962 a, b) .  

It is well known that a satisfactory prediction about a turbulent boundary 
layer cannot, in general, be made by any of the older theories relying on such 
concepts as mixing length or eddy viscosity (Bradshaw 1968; Phillips 1969; 
Kline, Moffatt & Morkovin 1969). For incompressible turbulent boundary layers, 
rather more elaborate methods have recently been devised, and are based either 
on further physical assumptions (Head 1958; Narasimha 1969) or hypotheses 
on the turbulent energy equation (Glushko 1965; Bradshaw, Ferriss & Atwell 
1967 ; Donaldson & Rosenbauni 1969) or deal with the underdetermined system of 
equations of mean motion, i.e. without an additional set of closure hypothesis 
(Millikan 1939; Gill 1968; Yajnik 1970; Afzal & Yajnik 1971, 1972). Various 
authors (Glushko 1965; Bradshaw et ul. 1967, etc.), in addition to the usual 
equation of mean motion, have employed the equation for transport of turbulent 
kinetic energy. To make the system of equations closed, the terms in the 
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turbulent kinetic energy equation are modelled by making five hypotheses, and 
each of these authors has used quite different hypotheses (see Donaldson & 
Rosenbaum 1969). The analyses of Yajnik (1970) and Afzal &Yajnik (1971) deal 
with the undetermined set of equations of mean motion and provide results to 
lowest order. This approach is somewhat similar to that of Millikan (1939) and 
Gill ( 1968), who have established relationships among the empirical correlations 
without invoking a hypothetical model of turbulence. Generalizations of the 
schemes which deal with the underdetermined set of equations of mean motion 
to transpiration, higher orders and compressible flows are needed. The present 
work deals with the problem of higher order effects in compressible turbulent 
boundary layers, while for the problem of transpiration we wish to make some 
comments. The problem of transpiration (Vw, the normal velocity at  the wall, is 
of the order of the friction velocity U,) needs, in addition to inner and outer 
limits (in the terminology of Yajnik), an inviscid limit with corresponding inviscid 
expansions, so as to account for the effects of displacement of the lowest order 
inviscid solution by the outer solution. This displacement gives rise to the displace- 
ment speed and to induced pressure, both of order U,. This is because on the solid 
surface dS,/dx is of O( U z )  but with transpiration it is of O(V,/U,). Thus with tran- 
spiration, even the lowest order problem (of order U,) is global in nature. None 
of the earlier studies have noticed this displacement effect and all these authors 
have treated the problem asa local one (see Jeromin 1969). Furthermore, in the 
presence of transpiration the inner expansions and the corresponding order 
hypotheses also need some changes. Further, the evaluation of higher order terme 
(without transpiration) also calls for the introduction of an inviscid limit with 
corresponding inviscid expansions. 

The problem of compressible turbulent boundary layers has been studied by 
Herring & Mellor (1969) and Cebeci & Smith (1970), using a set of closure 
hypotheses which rely on local equilibrium relations between the gradients of 
mean quantities and turbulent (Reynolds) terms (eddy viscosity and eddy con- 
ductivity) and ignoring the effects of turbulent history. The method of Head 
(1958) is extended by Green (1968) to compressible flows. Bradshaw & Ferriss 
(1971) have extended their earlier analysis of incompressible flow to the case of 
compressible turbulent boundary layers with adiabatic walls. In their analysis 
the latter authors have simplified the equation of mean momentum and turbulent 
kinetic energy through the so-called Morkovin (1964) hypothesis, supported by 
the experiments of Kistler (1959) and Demetriades (1968), which says that the 
structure of turbulence (specifically, dimensionless quantities like asnisotropy 
parameters, spectrum shapes and the like) will not be affected by compressibility 
as long as Ma is less than 5. 

The main aim of the present work is to formulate a general theory for higher 
order effects in turbulent boundary-layer flow of a compressible fluid past a plane 
body, at  large Reynolds number, by the method of matched asymptotic ex- 
pansions. The on-coming stream need not be iso-energetic and can have gradients 
of entropy and stagnation enthalpy. The parameters (y -  1) M2, and G (the 
molecular Prandtl number) are assumed to be of order unity. The assumption 
(y - 1)N: = 0 ( 1 )  probably restricts N, to a maximum of 5. For this case 
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(Mm < 5) it is plausible to assume (see 3 3) that the dimensionless fluctuations in 
velocity, temperature and density are of equal order, say, E (later shown to be U, 
at some designated point on the wall), and fluctuations in pressure are of the 
order of the local mean shear. 

The present analysis deals with the underdetermined set of equations of mean 
motion (without an additional set of closure hypotheses) and assumes that 
fluctuations in velocity, temperature and density are of order U, and the fluctua- 
tions in pressure are of order UZ,. It may be noted that these assumptions do not 
impose (a)  any condition (like Morkovin’s hypothesis) regarding the effects of 
compressibility or ( b )  any functional relationship between the quantities de- 
termined by mean motion and those depending on the turbulence. As a result, 
these assumptions are not the same as closure hypotheses. I n  the present work 
the first-order results depend upon gradients of entropy and stagnation enthalpy 
in the oncoming stream and turn out to be independent of viscous dissipation. 
The first-order analysis shows asymptotic laws for velocity, temperature and 
density distributions which correspond to the law of the wall, logarithmic law 
and defect law, and also skin friction and heat-transfer laws. The second-order 
terms of the present work describe necessary corrections to these laws at lower 
Reynolds numbers and account for viscous dissipation and mean convection in 
the inner region and displacement effects. In  the overlap region of the law of the 
wall and the defect law, the second-order corrections show bilogarithmic and 
logarithmic terms. 

At this stage, it is instructive to examine Rotta’s (1960) analysis of a com- 
pressible turbulent boundary layer with heat transfer. I n  his analysis Rotta 
(1960) has patched the law of the wall to the velocity defect law at the so-called 
point of maximum temperakure, rather than matching them asymptotically. 
This point of maximum temperature, according to Rotta, is located deep within 
the sublayer, and therefore depends upon the conditions at the wall (inner 
variables), in particular, the viscosity. The law of the wall proposed by Rotta is 

(1) 
- 
u =: U,f(SU,lVw,T,,M,,y,~,w). 

Here and are the dimensional tangential velocity and normal co-ordinate. 
T, = - Q,/(p,C,u,T,) is a dimensionless heat-flux parameter which we shall 
call the (dimensionless) friction temperature, Q, is the local heat flux a t  the wall, 
u, is the friction velocity (7-,/pw)*, T, is the wall temperature, Vw is the local 
dimensional kinematic viscosity, y the ratio of specific heats and w is the index 
of the power law for the viscosity-temperature relationship. The characteristic 
parameter for the compressibility is the friction Mach number M, ( = u,/aw, where 
a, is the sonic velocity at  wall temperature). For a given free-stream Mach 
number Ma, the friction Mach number M, is of the order of the dimensionless 
friction velocity U, (Rotta 1960). Thus for a fixed Mm, as R approaches infinity 
M, approaches zero like U,. 

As will be shown in 3 3, natural choices of scales for the velocity and temperature 
fluctuations are U, and T, respectively, and T, is of order U,. Without loss of 
generality, let 

T, = AtU,, (2) 
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where the quantity A,  is of order unity. Now using the above arguments an 
asymptotic expansion of (l), due to Rotta (1960), as R -+ 03 for fixed jju,/Yw is 

This expression (3) as well as the present work shows that the first-order terms 
are independent of M, and A,. 

2. Governing equations of mean motion 
The governing equations of mean motion for two-dimensional turbulent flow of 

a compressible fluid in non-dimensional form (all lengths are non-dimensionalized 
by a typical body dimension L, speeds by the characteristic reference speed U,, 
pressure by prnU2,, temperature by T,, density by p,, viscosity and second 
viscosity by p,) are as follows. 
Continuity equation: 

Momentum equations: 
(pU+pP”),+(pV+p”), = 0. (4) 

(pU+p”)U,+(pP+P”)U,+P, 

(pU+p&7)&+ (pV+p”)v,+P, 

= R-lLX(p, A, U ,  V )  + R-lLx(p’, A’; u‘, w‘) 
- -  - -  

- ( P U T  + Up‘u’+p‘u‘u‘),- ( p u ” +  Vp’u‘+p’u’v‘),, (5) 

= R-’L,(p, A;  U ,  V )  + R-lL,(p’, A‘ ;  u’, v’) 
- - -  - -  

- (pu’v’+ Vp’u’ +p’u’w’),- ( p v ” +  Vp‘w’+p’v’w’),, (6) 
where L, and Lv are used to denote the viscous terms in the x and y momentum 
equations and are given by 

Lx(p, A ;  u, V )  = 

L,(P, A;  u, V )  = 

+pK& + 2(pux)x + (AU, + A%),, 
+pm, + Z(pv,& + (AU, + AV,),. 

Energy equation: 

- -  (pU+&?) T,+(pV+pv)T,-D(UP,+ VP,) 
= (&)-I [Lt(p, T) + L,(p’, t ‘) - ( P E  + Up‘t‘ +p’t’u’), 

- -  - ( p Z +  Vp’t’+p’t’w’),+D[(~),+ (w~),-p‘(u;+w;)] 

+DR-l[@ + $4’1. 
Here 

denotes the conduction terms, @ is the mean dissipation defined by 
LAP, T) = (PT,), + (PT,), 

0 = p[ZUi + 2v; + (U, + + A(U, + &)2, 

the turbulent dissipation $4’ is given by 

$‘ = p [ 2 Z  + 2 2  + (u; + v32] + A(u; + vj)2 + 2p’( 2uxu;, + Uk2) 
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and D is the compressibility factor defined by 

D = ( ~ - 1 ) M 2 , .  
Equations of state: 

p = [(Y - Wrl (pT+p’t’)/D, 

p‘ = [ (y  - I)/y] (p’T + t’p + t’p’ - V ) / D .  ( l o b )  

Equation ( l o b )  for the pressure fluctuation p’ is obtained by subtracting ( l o a )  
from the instantaneous equation of state. 

Here ( U ,  V ) ,  P ,  p, T ,  p and h are the non-dimensional mean velocity com- 
ponents, mean pressure, mean density, mean temperature, mean viscosity and 
mean second viscosity respectively. The non-dimensional fluctuations of these 
quantities are denoted by (d, d), p’, p‘, t’, p’ and A‘. The non-dimensional co- 
ordinate along the body is x and normal to it is Y. The suffix x or y denotes partial 
differentiation with respect to x or y. The quantity R = U,p, L/p ,  is the charac- 
teristic Reynolds number, g = pC,/K is the molecular Prandtl number, M, is 
a characteristic Mach number and y is the ratio of specific heats. 

The boundary conditions to be satisfied by the mean flow a t  the solid surface 
are 

y = 0 ,  U = V = 0, T = TW(x), (11)  

and the turbulent fluctuations must vanish a t  the wall. Upstream the flow has 
to approach prescribed (possibly) non-uniform velocity and temperature fields. 

3. Scales for turbulent fluctuations and asymptotic expansions 
In  this section we first analyse the turbulent fluctuations (non-dimensionalized 

as in $2)  of velocity, pressure, temperature and density and estimate their 
relative orders of magnitude. The present work deals with the case where 
( y -  1)  M2, is of order unity, which probably restricts the upper limit of H, 
to 5 (non-hypersonic flows).. For M, below 5, experimental results concerning 
the fluctuating flow field are available and help us to estimate the orders of 
magnitude of the fluctuations under consideration. These experiments are 
analysed below. 

3.1. VeZocity jfuctuations 
The measurements of Kistler (1959) up to  a Mach number of 4.62 show that the 
distribution of the r.m.s. turbulent velocity fluctuation ( U ’ ~ ) ~ / U ,  is qualitatively 
similar to that found in the incompressible case (see Kistler 1959, figure 10, 
p. 294), suggesting that the whole turbulence production mechanism is similar 
to that of an incompressible flow in spite of the presence of temperature fluctua- 
tions (Laufer 1969). This observation leads to the assumption that the fluctuation 
u’ is of the order of the friction velocity, i.e. 

u’ N u,. (12a) 
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3.2. Static temperature fluctuations 

According to the measurements of Kistler (1959, p. 296, figure 11)  the static 
temperature fluctuation scales with an average mean static temperature across 
the boundary layer, i.e. 

where f(y/S) is a function independent of Mach number M, having a maximum 
of about 0-1 (Laufer 1969). When To - T, is of order unity (asin the present work) 
the fluctuation in temperature scales with the mean static temperature T. The 
appropriate scale for the mean static temperature is the friction temperature T* 
(see Bradshaw & Ferriss 1970; Rotta 1960, 1964). This suggests that the scale 
for static temperature fluctuation t' is the friction temperature Tyc, i.e. 

t' N T*. (12b) 

3.3. Static pressure fluctuation 

Kistler & Chen (1963)) from their measurements of static pressure fluctuation 
measurements up to a Mach number M, of 5, have shown that the root-mean- 
square value of the pressure fluctuation is proportional to the local surface shear 
stress (see Kistler & Chen 1963, figure 16, p. 59). Thus 

(p'2):/~, = constant. 

The constant depends weakly on the free-stream Mach number M,, and it 
changes from about 3 for subsonic boundary layers to about 5 for M, > 2. This 
observation suggests that the pressure fluctuations are of the order of the local 
wall shear (square of friction velocity), i.e. 

p' N uz,. (12c) 

3.4. Density Jluctuation 
For non-hypersonic boundary layers (Mm < 5) density fluctuation measurements 
have not been reported so far in the literature. However, for M, = 9 the density 
fluctuations have been measured for the first time by Wallace (1969) using the 
'electron beam technique '. In the absence of available experimental measure- 
ments for density fluctuations for the present case (Mm < 5 ) ,  it may appear rather 
difficult to decide their order of magnitude. However, this is not so, as there are 
some indirect observations which can lead us to a decision about the order 01 
density fluctuations. Two such observations are the following. 

(a)  Laufer (1969) has pointed out that the temperature fluctuations are 
essentially isobaric, i.e. 

a relation consistent with the observations of Kistler (1959) and Morkovin 
( 1964). This relation implies (Laufer 1969) that the pressure fluctuations produced 
by vorticity-bearing velocity fluctuations are of higher order and can be neglected. 

t'/T = -p'/p, 
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( b )  Morkovin (1964) has sho~vn that for the case when ( y  - 1)  M2, is of order 
unity (M, < 5 )  the density fluctuation p'/p is of the order of the velocity fluctua- 
tion u' /U,  i.e. 

p'/p E ( y -  1 )  MLu'lU.  

Observations (a) and ( b )  lead to the assumption that the fluctuations in p', zc' 
and T' are of equal order. I n  view of (12a)  and ( 1 2 b )  it follows that 

p' N U,, T, - U,. ( l a d ,  e )  

The latter assumption (12e) can alternatively be explained as follows. In  the 
definition of T,, the heat flux Q, could be replaced by T ~ U , ,  which, as can be 
seen from Rotta's analysis, is roughly the maximum heat-transfer rate within 
the layer. Then 

T, = u,UR,/CPrZ~ N U, if ( y -  I)M2 N 1.  

Lastly, using the Reynolds or modified Reynolds analogy, it can be easily shown 
that in order for T* to be of same order as U, it  is necessary for T, - T, (where T, 
is the recovery temperature) to be of order T,, and thus the assumption (12e) 
is valid for these large heat-transfer rates. 

In  the present work we shall employ the following notation for turbulent 
Reynolds terms. Second-order correlations of the type - U"wil1 be denoted by 
r,,, and third-order correlations of the type -p'u'd by T,,~. Thus we shall, in 
general, write 

__ - - 
' I f  

T,,, = -a%', ray = -a; b' = - b' aa'lay, T , ~ ~  = -a  b c . 

Prom our order assumption a' N O(E,) etc., it  follows that 

Here, the suffixes a, b and c are attached to E for convenience of writing. The 
quantities, E,, E,, E,, E, and EP are the scales of fluctuations in tangential 
velocity, normal velocity, density, static temperature and pressure and without 
loss of generality can be writhen as 

(14) i 
E, = E, = E,  = U,, ( =  E say), 

E, = T,,, E, = A,E, 

E, = uz,o, 
where U,, and T,, are the friction velocity and temperature a t  some designated 
point x = x,. The above relations (14) are the direct consequence of observations 
(12a-d) that the fluctuations in velocities, temperature and density are of 
the order of the friction velocity and fluctuations in pressure are of the order 
of the local shear stress. Lastly the fluctuations in viscosity are assumed to 
be of the order of fluctuations in temperature t ' ,  i.e. T,o. 

Prom the behaviour of the fluctuations (equations (14)) and the arguments 
that follow, it is obvious that the appropriate gauge function for an asymptotic 
expansion for the mean velocity field is the friction velocity. Furthermore, the 
eecond-order effects in turbulent boundary layers when compared with first- 
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order effects are again of the order of friction velocity, as can be seen from the 
following. 

(i) Measurements of Lobb, Winkler & Persh quoted by Schlichting (1968, 
figure 23.11) show that the characteristic shape of the law of the wall G/u, us. 
jju,/Y, is similar to that of an incompressible flow except that it weakly depends 
upon the friction Mach number M,. 

(ii) The analysis of Rotta (1960) also shows that the law of the wall for a com- 
pressible flow depends on the friction Mach number M,. The effect of N, on the 
law of the wall is weak (a fact pointed out by Rotta 1967). The maximum value 
of M, encountered by Rotta (1960) is 0.12 when M, = 5 and 0.14 when M, = 8. 

Now in view of (i) and (ii) it  follows that the law of the wall depends upon M,, 
which goes to zero like U, as R -+ 00. Thus it is preferable to regard the weak 
effects of iM, (of the order of U,) on the law of the wall as second-order effects. 
Thus the appropriate sequence of gauge functions is 

l , E , E z  ,.... (15) 

4. Analysis at large Reynolds number 
We shall now analyse the underdetermined set of equations of mean motion 

(4)-(11) for turbulent boundary-layer flow of a compressible fluid at large 
Reynolds number. The parameters IT and D are assumed to be of order unity. 
The method used is that of matched asymptotic expansions and needs three 
limiting processes, an inviscid limit (defined by y fixed, R --f 00)) an outer limit 
[Y = y/A fixed, R + co; A N O(E)] and an inner limit [r = y/S fixed, R --f m; 
S - O(E-lR-l)], for describing the flow. In  this section, we shall study (4)-(11) 
in each of the three limits and try to match in their regions of common validity. 

Before we proceed, let us examine the equation of state ( l o b )  for fluctuations. 
It will be shown later that throughout the boundary layer T and p are of order 
unity, and under our assumptions p’, t’ N O(E) and p’ N O(E2),  equation ( lob)  
gives to the lowest order 

This is the familiar equation of state for fluctuations proposed by various authors 
empirically (see Kutateladze & Leont’ev 1964; Laufer 1969). 

p’/p+t’/T = 0. (16) 

4.1. Inviscid layer 

The inviscid limit is defined as y, IT and D fixed as R --f co. As was described earlier, 
the turbulent boundary layer has three length scales: an inviscid scale, an outer 
scale A - O(E)  and an inner scale S N O(E-lR-l). The ratio of the outer to the 
inviscid length scale is A - O(E) and of the inner to the outer scale is 

8 = SIA N O(E2R)-l. 

Thus the structure of the turbulent boundary layer depends upon two small 
parameters E and a” and the appropriate inviscid expansion (Van Dyke 1964) 
for any of the variables, say U ,  is of the form 
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As will be shown later E N O(ln 8)-l as 8+ 0, i.e. 8is of much higher order than E.  
Therefore the terms Ul(x,y; s), U2(x, y;  a), ..., may be represented by Ul(x, y, 0), 
U2(x, y, 0), . . . , in the above expansion. Therefore the expansion can be written as 

U = Ui(z, y) + EU2(x, y) +E2U3(z, y) + . . . 
+$[D,(x, y)+ EO2(x,y) + ...I + ... . (17b) 

Thus we consider the following inviscid expansions: 

By substituting the expansions (18) into the equations of mean motion (4)-(10) 
and collecting the coefficient of like powers of E we get the problem for successive 
orders. The equations to lowest order are 

(P1 Y),+ (PI K)l/ = 0, PlZl(U1) + 8, = 0, 

P 1 Z l ( W + ~ l ,  = 0, P 1 ~ 1 ( ~ 1 ~ - ~ ~ 1 ( ~ 1 ~  = 0, 1 (19) 

Pl = r ( Y - 1 ) / m l w .  

Here 2, is an operator given by 

z, = urn alax + v, spy. (20) 

Equations (19) are the well-known Euler equations of motion. Integration of 
these equations along a streamline gives 

(21a) 

( 2 1 b )  

(21c) 

Tl+ to( UZ, + VZ,) = Gl(Yl), 

P1 = UY-- 1) Tl/yll'(r-l)exP r v % ( ~ l ) / ( Y -  111, 
Pl = P I  exp [rsl(Yl)l .  

These expressions show thah the entropy 23, and the total enthalpy GI are con- 
stant along a streamline. For a uniform oncoming stream, it follows that S, 
and G, are constant throughout the outer region. The first-order equations are 
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For the second approximation one obtains a corresponding, more complicated, 
system of equations, of which those for continuity and tangential momentum are 

Equations (23) for the second approximation involve all the second-order 
correlations in velocities, density and temperature. 

Equations (19), ( 2 2 )  and (23) are ‘inviscid’ in the sense that they do not involve 
viscous and heat-conduction terms. Thus, the inviscid equations, in general, 
cannot satisfy the no-slip condition. 

4.2. Outer layer 
The outer limit is defined as Y = y / A ,  G- and D fixed as R -+ co. The behaviour 
of the inviscid expansions (IS) for small y leads us to study the following outer 
expansions: 

On substituting the expansions (24) in (4)-( 10) and equating to zero the coefficient 
of lowest power of E ,  we get the lowest order problem 

(P”lU1)z + ( P l S ) ,  = 0, (25a)  

P”l(U1 U l r  + w1 U l P  ) + ez = 0, ( 2 5 b )  

PlY = 0, (25 c) 

p”,(u,h,x +%JLlY) - D W l z  = 0, ( 2 5 4  

Pl = “7- 1)lYlPlhllD. (25  e )  

The problem t o  next order shows that A is of the order of E.  Without loss of 
generality let A = E.  Now the first-order problem is governed by following 
equations: 

(P”lU2 + P”27dz + fP”lV2 + hs - Tpvl )Y  = 0, W a )  

- (P”1~uv1)P, (26b)  
P2P = 0, (26 4 

-m2Plz+ulP2z) = ( p ” l T ? J t l h  ( 2 6 4  

( a s e l  

(PlU2+P2Ul)UlZ+ (Plv2+P2~1-~pv1)~1Y +P1(u,u,z+v,u,,) +pzz 

(/%a2 +P2u1) hlx + ( P l V ,  +P2v1 - Tpv,) hlP +PIAt(ulh2z + %h2,) 

- 

P2 = “Y- 1)lYl (p”lh24+P2hl)lD. 
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The equation of state (1  1 b )  for the fluctuations gives 

For the second approximation, we obtain a corresponding more complicated 
system of equations: 

(P”l u3 + P”ZuZ f P ” 3  u1 - 7pul )z f (P”l v3 + P”2 ‘2 +P”3 v1 - rpv2)Y  ‘ 9  (27 a )  

(P”lU3 +P“2% +P”3u1-7pul) u lz+  (P” lv3+P”2v ,+P”3v1- rp1)~)  ulY 

+ ( P ” l u Z  + P”2 212z -k (P”l v2 +P”zvl) uZY +P”1(u1u3x + v 2 u 3 Y )  + ‘2, 
= [P”lrtta! +P”27u,1 +vlrpul + T ~ ~ ~ , I Y  + ( P ” ~ T , , ~  + ~ 1 7 ~ ~ ~ ) ~ ,  (27b) 

P3F = ( P ” l ~ V t I l ) P  P7C) 

In the similar way we can write equations for energy and state. These outer 
equations (25c), (26c)  and (27c)  show that the pressure is constant across the 
outer layer to the order E.  Further, the first-order outer equations involve double 
correlations ruU1 and rvtl, while the second-order equations (27)  involve third- 
order correlations rpuvl and rpvtl, along with other second-order correlations. Up 
to this order the outer-flow equations are independent of viscous dissipation and 
turbulent work of compressibility due to correlations between pressure and 
velocity fluctuations v i .  

These outer equations do not involve viscous and heat-conduction terms and 
thus the outer expansion will also fail near the wall in that it will not satisfy the 
no-slip condition. 

4.3. matching qf expansions for inviscid and outer layers 

The inviscid expansion (17)  and the outer expansions (24) will now be matched 
in the region where both are valid (this overlap region is not the same as Millikan’s 
overlap), by the use of the well-known matching principle (see Van Dyke 1964) 

where &A( f )  and Om( f )  represent the m-term inviscid and outer expansions off, 
The left-hand side of the above matching principle can be obtained by first 
writing the n-term outer expansion off in terms of the inviscid variable y and 
then using the m-term inviscid expansion. Similarly, the right-hand side of the 
relation (28) is obtained by first taking m terms of the inviscid expansion off 
written in terms of outer variable Y and then using the n-term outer expansion, 

If the matching principle with m = n = 1 is applied, the expansions ( I  7 )  and 
(24) give 

as Y +a. (29) i u l (x ,  Y )  = U,(X,O), Pl(X, Y )  = Pl@, O),  

P l ( X ,  Y )  = P ” l ( X ,  01, h,@, Y )  = T l ( X ,  O), 

7 , b 1 ( 5 ,  Y )  = rub& O)?  TUbCl(X, Y )  = rc lbc l (X9 O ) ,  

For later convenience the quantities Ul(x, 0), Pl(x, 0), pl(x ,  0) and T’(x, 0) will 
be denoted by Ulo, P,,, plo and T,, respectively. Note that no condition has been 
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imposed on the V component of velocity. Next, matching with n = 1 and m = 2 
gives the matching condition 

K(x,O) = 0, 
G(x,  0) = lim [vl - Yvly] .  

YXC 

Equation (30b)  is the matching condition for the first-order inviscid flow and 
shows that the effects of displacement of the inviscid solution by the outer 
solution is that of the surface distribution of sources. 

Now the solution of the lowest order outer equation (25) which satisfies the 
matching conditions (29) is 

131) i 

i 

u1 = 9 0 ,  P 1  = PlO, 

211 = [Q - (~iouio), YlI~10,  

PI = PlO, hl = TlO. 

Here Q is the constant of integration and will be determined, later, by matching 
(31) with the inner solution. Furthermore, with the help of (31) the result (30b)  
becomes 

U x ,  0) = Q / P ~  (32) 

We now match first-order terms in the expansions (18) and (24), and using the 
matching principle with rn = n = 2 we get 

as Y-+co. (33) 

U&, Y )  = T,T(X, 0) + y 9 y ( x ,  O), 

v2@, 0) = Kdx, 0) + Y K Y ( X ,  O), 

7,& Y )  = L&, 0) -i y (x, O ) ,  

The derivatives U,, etc. may be evaluated from the inviscid equations (19)-(21). 
For the present case of a non-uniform free stream, we have a t  y = 0 

In  writing the relation for Ul,, we have used Crocco's vortex theorem. Here 
S; = dX,/dY,, G; = dGl/dY, and Yl is the first-order inviscid stream function 
defined by continuity equation in (19). 

Let us now consider the second-order flow. Applying the matching principle 
with n = 2 and m = 3 gives the matching condition 

V3(x, 0) = v2- Yw,, - iY2v2yp  as Y + co, (35) 

which represents the effects of displacement of the first-order outer flow by the 
second-order inviscid solution. Lastly, the matching principle with m = 3 and 
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n = 3 gives the matching conditions for the second-order outer flow. The con- 
dition for the tangential velocity component is 

(36)  u3(x, Y )  = U3(x, 0) + YU,,(x, 0) + 8 Y2Ul,,(x, 0) as Y -+ co. 

Conditions similar to (36) can be written down for other variables. 

4.4. Inner layer 
Failure of the outer limit near the wall requires the introduction of an inner 
limit. From an order-of-magnitude analysis we are led to introduce the inner 
variable 

7 = YERIV, 

(where v, is the non-dimensional local kinematic viscosity a t  the wall) and study 
the limit R + 00 for fixed 7, (r and D. The inner limit of the outer expansions (24) 

Furthermore, the viscosity ,u is function of temperature and also requires an 
appropriate inner expansion. The Taylor series expansion of ,u around il gives 

P = ,uu(ĥ l)+E,~c,(ĥ l)L,+O(E~), 
where ,uT = (d,u/dT),,kl. 

Introduction of these inner expansions (37 )  into the equations of mean motion 
(4)-( 10) and collection of coefficients of various powers of E give the equations 
for successive approximations. To the lowest order, the equations of continuity, 
normal momentum and state give 

(31W7 = 0, @I7 = 0, @I = [ ( Y -  ~ ) / 7 1 p ^ I ~ l / ~ .  (38a-c) 

Equation (38b)  shows that the pressure is constant across the inner region. Now, 
matching the pressure of the inner region (28 b )  with that of the outer region ( 18) 
to lowest order, we get 

Integration of (38a) gives 

where vw is the velocity of transpiration at the wall, if any. The matching of the 
normal component of velocity in the inner region (40) with that in the outer 
region ( 3  1 c )  determines Q = pw ww, and (32 )  reduces to 

h 

p^lhl= Ah = PIOTIO = P A " .  (39 )  

p^l% = P W V W ,  (40) 

Ux,  0) = %(X) TlO/T,. (41) 



Compressible turbulent boundary layers 15 

Equation (41 )  is the essential boundary condition for the solution of the dis- 
placement-speed problem (22). This shows that, in presence of transpiration 
(vw + 0) ,  the problem is global in nature, in the sense that the displacement- 
speed problem (22) has a non-trivial solution. However, for an impermeable wall 
(vw = 0) the boundary condition (41)  becomes homogeneous, and the solution 
of the displacement-speed problem (22) is trivial and hence the effects of dis- 
placement are of higher order. For the latter case, by matching the pressure in 
the inner, outer and inviscid regions t o  order E we get 

$2(x, 7) = P2(X, Y )  = W X ,  Y) = 0. (42)  

Now for the case of no transpiration the x momentum equation, energy equation 
and equation of state give to the lowest order P1 = pw and h, = Tw and to first 
order 

h 

(43a) @Zl l  + +UVJll = 0, 

(n-'&, ++vtl)ll = 0, (437)) 

P 2  = - ( P w l T w )  Ath2. (43c) 

+pvl = - P,At.i,tllTW. ( 4 3 4  

The equation of state ( 1  1 b)  for fluctuations leads to 

For the second approximation, we obtain a corresponding, more complicated, 

(44a)  

(44c) 

-82h2, = D[+p v -Pw(%l]++%uvl 11 9 ( 4 4 4  

(44 e) 

system of equations: 
Pw 829 = +pv17p 

$37 = Pw +VV1 r ] ,  

[a37+'7&V2+ (P2'UVl + 3 p u v 1 ) / P w + h 2 A t q 2 ~ P T / ~ - A t ~ - ' ~ f i 7 & q l l , - 8 2 ~ 2 ~  = 0, (44b) 

[a-'Ata37 + +wt,  + @2+vtl + +pvtl)/Pw f g-'Atg2h2~pT/P A - (Pg)-'+fit,, 117 

233 = {(Y - M W 3 T w  + AtP2k2 + AfP23l- At+,t,>/D. 
The equations of first order, equations (43), are independent of convection and 

viscous dissipation and involve only second-order correlations +,,, and fvt l .  It 
may be noted that the equations of second order, equations (44),  contain the 
convection terms due to the normal velocity v2, caused by turbulent mass flux 
+pvl. For an incompressible flow, however, this turbulent mass flux is zero and 
convection is a higher order effect. Furthermore, (44)  involves viscous dissipation, 
triple correlations and the work of compressibility f p v v 1  due to correlation between 
velocity and pressure fluctuations. Lastly, these equations for the inner region 
show that the pressure is constant across the inner layer. 

The solution to (44a) which satisfies the boundary condition at  a solid wall is 

82 = fpv,/Pw. (45) 

Now, using (43c),  (43d)  and (45)  and integrating the tangential momentum 
equation (44b) and temperature equation ( 4 4 4  once we get 
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Here f2 and g, are constants of integration and represent second-order contribu- 
tions respectively to skin friction and heat transfer a t  the wall. 

The equations to first and second order show that the law of the wall, for 
example, for velocity profilt: in functional and form can be written as 

This may be compared with the relation (3) obtained from the work of Rotta. 
The mean tangential momentum equation shows that effects of the pressure 
gradient are governed by the parameter np = E-3R-lP1,. For a given pressure dis- 
tribution and a given location other than a point of zero skin friction, this term 
approaches zero as the Reynolds number approaches infinity. In a separating 
boundary layer, the pressure term does not approach zero uniformly. As a result 
the expansions used will not be valid near a separation point. 

Finally, the dissipation in. the mean temperature equations is governed by the 
parameter nM = (y - 1) 342, E .  I n  the present work, where (y  - 1) N15 is assumed 
to be of order unity, the parameter n,, goes to zero uniformly as R + CO. Thus 
the effects of viscous dissipation are of second order. It also turns out that the 
work of compressibility due to fluctuations v’pl is also of second order, showing 
that the pressure fluctuations do not influence the boundary layer to lowest order. 

4.5. Matching of outer and inner expansions 

The matching of the pressure and the normal component of velocity has been 
carried out in $4.4. We now match the expansions for tangential velocity, 
temperature and density in the outer and inner expansions, (24) and (37)  
respectively, in the overlay region (Millikan 1939) by the matching condition 
(Van Dyke 1964) 

8 n O n ( f )  = % 4 L ( f ) .  (49) 

We first consider the matching of turbulent Reynolds terms. Applying the 
matching principle with m = 1 and n = 1, the outer expansions (24) and inner 
expansion (37) to double and triple correlations give 

LlfW) 7,bl(It^, 0 )  as 7 -3 03, 

L C l ( ’ X ,  9 )  7,bCl(X> 0) as 9 + CO. 

f U b z ( X ,  9 )  - 7 u b z ( X ,  0) as 9 + 

Next, applying the matching principle with m = n = 2 ,  the second-order correla- 
tions give 

Therefore, without loss of generality, we assume that 

%Il - L1(4 - J U b l ( 4 / 9  + . . . as 7 --z 00, (50a) 

%bz - Z,,(4 - J a b z ( 4 / 9  + . . . as 9 --f 00, ( 5 0 b )  

L C ]  - Z b C , ( 4  - Jaac1(~)/7 + * * .  a’s r + a. ( 50c) 



Compressible turbulent boundary lagers 17 

Integration of the first-order inner equations ( 4 3 )  and use of (50) and boundary 
conditions at the wall give 

( 5 1 a )  

( 5 1 b )  
where fl and g, are unspecified functions of integration and represent respectively 
the first-order skin friction and heat transfer at  the wall. The function Hub, is 
a regular integral defined by 

u2 = ( f l - - 4 W 1 )  7 + Juw, In ( 1  +a)  +HUWl(?9) 

+h2 = (g1-4JtJ r + Atl In (1 +a)  +Hwt1(7)9 

For the matching of tangential velocity component and temperature, we first 
consider J?z(U) and Y2(T) as given by ( 5 l a )  and (51b): 

4(u) N JT(~~-- I~~, )  Y E 2 W w +  Ju,l~n(YEzR/vw)+H,,l] as 7 --f 03, ( 5 3 a )  

4(T)  Tw + Et[(g1 - 4t,) YgE2R/vw + Jut, In ( YE2R/v,) + fl&,I 
as a+oo. ( 5 3 b )  

Applying the matching principle (47 )  with m = n = 2 shows that 

fl = Iuv,, g1 = I&, (54% b )  

Eln(E2R/vw) - 0(1), EtIn(E2R/vw) N O ( 1 ) .  (55% b)  

Y3(U) is given by ( 4 6 ) )  (50) and ( 5 3 a )  as 

- 8 3 V )  EIJuvl In ( YE2WW) + Huvll  + E2[(x1 - x3) YE2R/vw 
+ x3(E2R Y/vw) In ( YE2B/vw) + x2 In ( YE2R/vw) + x4{ln ( YE2R/vw)}z + A,], 

(56)  
where 

x1 = f2-Iuvz-P~11puvl+P-11pu,1At+ (Iuv,Hwtl + J,,, Jvtl)At/Tw+A,, 

x 2  = JUW2+PW1 Jpuv, -P-lJp~lAt-AtJu, lJ , t l ITw 

x 3  = (Jvt, I,,, - Juw, Ivt ,)  AtITW) 
( 5 7 )  -At(1 +PTTw/p) JuvlHvtl/Tw, 

x 4  = - +PTTw/P) Juwl Jwtl At/2%) 

and A, and A, are the regular and bounded integrals for q -+ oo. The matching 
condition applied with m = n = 3 gives 

x1= 0, x3 = 0, (58a, b)  

and Eln (E2R/vw) has to be of order unity from (55a). Inorder to obtain the results 
in a convenient form, let 

[ ~ + E X ~ / J ~ , , + . . . ]  Eln(E2R/vw) = a,+a2E+a,E2+0(E2). (59) 

Introducing (59) in (56)  we get 

@34(') a1 J u w 1 + X 4 a ~ + E [ ( J u w 1 $ - 2 X 4 a l ) 1 n  y+Hu,1+"2 Jug, 

+2x4al(a2-ollX2/Juw1)1+E2[X4(1n y)2+ ( x 2 +  2x4a2 

- 2a1X4XdJU01)1n Y+a3JUW1+Az+x4n31'  (60) 
2 F L M  57 



The matching condition (47) with m = n = 3 for the temperature profile gives 

x o  = 0, x1= 0, x 3  = 0, ( 6 4 )  

and E, In (E2R/vW) has to be of order unity from (55b).  Without loss of generality, 
let 

Introducing (65) in ( 6 2 )  and applying the matching condition with m = n = 3 
we get 

[I +Etfz/J,,,+. ..I  Etln(E2R/v,) = +P2Et +P3Et + O(Ef) .  (65 )  

P1 Jut, 0- + 24P; = TlO - T,, (66a) 

(Jut, + 2 f 4 p 1 )  In '+ Hvtl + 2 f 4 p 1 ( P 2  -plfZ/ Jt.tl r, 
+opZJvt, as Y --f 0,  ( 6 6 b )  

+At2+f4Atg as Y+O. (66c )  

The matching of the density distribution leads to expressions similar to those for 
the velocity and temperatu.re profiles. 

h3(x ,  ') 24(ln 'I2+ (xh2+ 2 2 4 P 2 -  2Xh4f2P1/J%.tlc)1n Y+P3cAtl 

5. Results and discussion 

are 
The inner expansions for the tangential velocity component and temperature 

(67a) 
u N ~ ~ ~ u ~ l ~ ~ ~ + ~ , ~ 1 1 + - ~ 2 [ ~ 4 ( ~ n ~ ) 2 + ~ z l n ~ + A , ] + O ( E 3 )  as 7 +a, (67b)  

(68a) 
T N T, + E,[J,,, g In 7 + Hut, w] + E2[f4(ln y)2 + 2z In + A,*] + O(E3)  

u == E ~ Z ,  7)  + E ~ ~ L ~ ( X ,  7) + o ( E ~ ) ,  

T = T, + Et&,(x, 7) + E$&Jx, 7) + O(E3),  

as r + a .  ( 6 8 b )  



TTTT

(69a)  

The corresponding outer expansions are 

u = U,,(Z)+EU~(X, Y)+E~U,(X,  Y ) + o ( E ~ ) ,  

u10+E[ ( Juv~+2~4u l )1n  y- Juvlu2+ Huvl+ 2 ~ 4 u 1 ( u 2 - u 1 ~ 2 / J u v ~ )  

+E2[X4(1n y ) 2 + ( x 2 +  2X4a2-2u1X2X4/J,,~)1n Y+&iJ1'3 

+A2+x4A3] +O(E3) as Y + 0, (69b)  
U N Ulo+EYUl , (x ,0)+E2[U3(x ,0)+~Y2U, , , ]+O(E3)  as Y -+a, (69c)  

T = TlO(4 +E,h,(x, Y) +Eth,(x, Y) + O(E3, 
Tl,(x)+Et[(J,t1(++2f4bl)1n Yf&1b2(++HtA1g+2f4bl 

( P Z - P l a 2 / J V t l ( + ) + E ~ [ f 4 ( 1 n  'I2+ ( 2 2 +  ' f 4 P 2 -  'blf4f2/&lg) 
x ln  Y + a J , t l p 3 + A 2 t + f , h 3 t ] + O ( E ~ )  as Y + O ,  (70b)  
TlO(X) + Et YTl,(X, 0) + EXT,(x, 0) + + Y2T,,,(x, O)] + O(E$ T 

as Y-too.  (70c)  

The first-order terms (of order E )  in relations (67a)  and (68a)  are the laws of the 
wall for velocity and temperature distributions. These laws of the wall for 
a compressible fluid have the same forms as in incompressible flow. The relations 
( 6 9 a )  and (70a) are the corresponding defect laws. The second-order terms of 
these laws represent the necessary corrections at lower Reynolds number. These 
expressions show that the effects of entropy gradients and stagnation enthalpy 
on the outer flow are of the first order, while those of displacement are of second 
order. In  the inner region, the first-order results are independent of viscous 
dissipation and the second-order terms depend upon mean convection due to 
the turbulent mass flux, viscous dissipation and work of compressibility. In 
the overlap region, the first-order results show logarithmic distributions of 
velocity and temperature. The ratio of the slope of the defect law to that of the 
law of the wall (later cited as the slope ratio) for the first-order results in the over- 
lap region is 1 + 2x4ul J;:l for the velocity profile and 1 + 2a-124/31 J& for the 
temperature profile. The second-order terms in the overlap region are the correc- 
tions to first-order terms a t  lower Reynolds number and show bilogarithmic 
and logarithmic terms. In  the above analysis the constants Juv,, Jvtl, ul, u2, 
etc. (in equations (67b) ,  (68b) ,  (69b) ,  (70b))  are left unspecified. This feature is 
a consequence of the underdetermined nature of the system of equations. 

Some of the above-mentioned features can also be shown from the work of 
Rotta (1960)) although, in the light of the present work, his analysis is not 
consistent to order E2 as he has dropped some of the terms (like mean convection 

U,, triple correlations p'u'v', work of compressibility due to fluctuations 
v'& etc.) of the same order as those retained. Using relations ( I b )  and ( 2 e )  
of the present work and an asymptotic expansion of equation (1  7 )  of Rotta (1 960) 
for the law of the wall as R + 00 for fixed q, we get 

0 = U,[k-llny+5.2] + U ~ [ - O ~ 5 ~ t ~ t k - 1 ( l n y ) 2 + k - 1 ( l ~ 7 A t - O ~ 1 M , ( p , / p , ) ~  

- 

- 2.6~~~.4~k-~) lny+cons tan t ]+  ..., with k = 0.4. (71a) 

This shows that the first-order results are independent of N ,  and second-order 
terms involve bilogarithmic terms. Now in order to show that the slope ratio 

2-2 
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in the work of Rotta is different from unity, we first note that Rotta has 
patched his law of the wall to  the defect law a t  the so-called point of maximum 
temperature, rather than matching them asymptotically. This point of maximum 
temperature, according to Rotta, is located deep in the sublayer and, therefore, 
depends upon wall (inner) variables, in particular viscosity. We now write an 
asymptotic expansion of equation (32) of Rotta for the velocity defect law as 
R --f co for fixed y/A as 

Here U $  is the friction velocity formed using the densityp" at the patching point 
y* (given by equation (29) of Rotta) of maximum temperature, which lies in the 
sublayer and depends upon viscosity. Thus the slope ratio U$/U, obtained from 
(71a) and (71b)  is not only, in general, different from unity, but depends upon 
viscosity. 

Further, Baronti & Libby (1966), in their study of point-to-point mapping of 
compressible turbulent boundary-layer flow into constant-density flow (as sug- 
gested by Coles 1964), found that the velocity profiles (with or without heat 
transfer up a Mach number of 6) in the inner region were well correlated by the 
law of the wall. However, for the velocity defect law these authors found a 
systematic degradation with increasing Mach number, or in other words, the 
additive constant and slope of the defect law in the overlap region can depend 
upon the Mach number and wall temperature (see figures 5 and 8 of Baronti & 
Libby 1966). I n  the present work this slope ratio is found to depend upon the 
viscosity-temperature relat'ionship and the wall temperature and it does not 
directly depend upon the Mach number. 

The skin friction law as given by (51) is 

In  the skin friction law (72) the constant a, depends upon the viscosity law and 
wall temperature and can be determined from matching condition (6 la) .  The 
first two terms on the right-hand side have the same form as the classical skin 
friction law for incompressible flows. Winter & Gaudet (1969) have found, from 
the analysis of data from various sources, a skin friction correlation similar to 
that of an incompressible flow which is independent of Mach number up to 
Mm = 4. The second-order term in (72) is the necessary correction to the skin 
friction law a t  lower Reynolds numbers. 

The coefficient of heat transfer C, = BE,, using (59) and (65)) is 

where and q52 are given by 
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In  the heat-transfer law, the first-order terms depend upon the wall temperature 
and viscosity-temperature relationship, and the second-order terms depend 
upon M,. 

Uniformly .valid expansions can be obtained by taking the unions of inviscid, 
outer and inner expansions and then subtracting the common parts (see Van 
Dyke 1964). 

The first-order analysis of the present work shows that the effects of high 
Mach number are mainly due to variable fluid properties, rather than viscous 
dissipation. This suggests that, experimentally, we can study the structure of 
a compressible turbulent boundary layer at bow Mach number but with variable 
fluid properties. A similar suggestion was made by Morkovin (1964). 

The analysis of incompressible flow carried out in the appendix exhibits 
logarithmic distributions in the overlap region to order (E3R)-I, while for com- 
pressible flow only the first-order terms show a logarithmic distribution, and 
the second-order show bilogarithmic terms. 

The present analysis does not include other effects like curvature and low 
density (non-continuum). The non-continuum effects of velocity slip and 
temperature jump can be studied in the framework of the Reynolds formulation. 
For these effects the reader may refer to Afzal (1971). Analysis of the problem 
dealing with effects of curvature is currently in progress and author hopes to 
publish the results in near future. 

It is a pleasure to thank Prof. Roddam Narasimha for many helpful discussions. 
I have also been benefited from discussion with Prof. M. R. Head, K. Yajnik, 
A. Prabhu, M. M. Oberai and D. B. Spalding. I am also thankful to the referees 
for some very helpful comments. 

Appendix. Analysis for incompressible flow 
Here we shall describe the effect of pressure gradients [of order (E3R)-1] on 

the law of the wall and the velocity defect law. To evaluate this effect we need 
to calculate many higher order terms and thus the analysis for a compressible 
flow becomes very complicated. Therefore, we shall study the effects of pressure 
gradient for an incompressible flow only. The governing equations for an in- 

U,+Tr, = 0, (A 1) 
compressible flow are 

(A 2 )  

(A 3) 

UU, + VU, + P, = R-l( u,, + u,,) + ruUx + ruVy, 

W, + VV, + P, = R-'(CZ + 5,) + T,, + rvVv. 
The boundary conditions at the wall are 

U(x,O) = 0, V(x,O) = 0. 

(a)  Inviscid layer. In order to study the problem to order (E3R)-I we have to 
consider double expansions of the type described by equation (17b). Thus we 
assume the following expansion : 

U = 
00 

UrL(x, 9) Ern-' + (E2R)-' Ol(,, 9 )  + O(ER)-', (A 4) 
?n=l  
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and similar expansions for the other variables. The problems governing U,, ol, 
etc. can immediately be written down from the governing equations (A 1)-(A 3). 
It turns out that the equations governing U,, U,, ..., and 4, ..., are inviscid. As 
such, the inviscid expansion cannot, in general, satisfy the no-slip condition. 

( b )  Outer layer. For the outer layer, the asymptotic expansions are 

m 

m 

v = 

P = 

C om(x, Y )  Em+ (ER)-lG1(x, Y )  + O(R-l), 

2 pm(x, Y )  E m - l +  (E2R)-1pl(x, Y )  + O(ER)-1, 

(A 5 b )  

(A 5 c )  

m=l 
m 

m=l 

The problems governing u, etc. are inviscid in the sense that these do not involve 
the viscous terms, while the problem governing d, involves the viscous term 
ulyF.  However, this outer layer also cannot, in general, satisfy the no-slip 
condition at the wall. 

The matching of the inviscid expansions and the outer expansions can be 
carried out in a manner similar to that described in 3 4.3. 

(c) Inner layer. In the inner layer the appropriate asymptotic expansions are 

The expansion (A 6a)  shows that the V component of velocity in the inner region 
is of the order of R-l, while for the compressible flow, this velocity was shown 
to be of order E2. The equations governing the inner layer are 

(A 7 4  

(A 7 b )  

Wenow consider the matching of the outer and inner expansions. For Reynolds 

a,,, + .iuv,, = 0 (m = 1,2,3, . . .), 
Sl,, + +UV1, = Plz = - UlO UlOZ. 

stresses, the inner limit of the outer expansion (A 5 d )  is 

m 
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On using (A 9) and (A lo), the integration of equations (A 7a) and (A 7 b )  gives 

Gm = [fm-Tuv,(x, 011 7 + Juvmln (1 +7)  +RuU,, (A l l a )  

+ Juv, In ( I  +7) + &,,. (A 11 b )  

$1 = - *lUIO U l O Z  + %vlp(x, 011 r2 + r f1-  7uv,(x, ON7 

The outer limit of the inner expansion (A 6a) may be written using (A 1 1) as 

U = C Em[{fm - ~ ~ , ~ ( x ,  0)) YE2R + J,,, In (E2R) + Ju,, In Y + HtLvm] 
m 

m=l 

- B [ ~ l o ~ l o Z + ~ u , I p ( ~ ,  011 Y2R2+ [f1-~?,,& 011 y +  (E2R)-l 

x [J,,, In Y + J,,, In (PR) + R u ~ ~ l  + . . . . 

f m  = 7uv,(x, O),  7uvIy(x7 0) = - U1oUlow 

C Juvm Em-l + (E3R)-l Juv, + . . . E l n  (E2R) = 

(A 12) 

Now the inner limit of the outer expansion (A 5a)  shows that matching with 
(A 13) leads to 

and E In (E2R) has to be of order unity. Without loss of generality let 

(A 13) 

W 

m= 1 

+ (E3R)-'B1 + . . . . (A 14) 

By introducing (A 14) in (A 12) and matching it with the inner limit of the outer 
solution we get 

u1(x, Y )  N Bo+[fl-~uwl(x,O)~ Y as Y + 0, 

um(x, Y )  N J,,,mIn Y+HUvm+B,, (m = 1,2 ,3 ,  ...) as Y -+ O , ]  (A 15) 

ii,(x, Y )  - JUv,In Y+R,,,+B, as Y + 0. 

( d )  Results. In  the overlap region the law of the wall and the velocity defect 

m 

Bmwl Em-1 

law are 
03 

U N 2 Em[Ju,,mIn 7 + H,,,] + (E2R)-' [JuQ1 In + RUv1] + O(ER)-I 

U - Ulo + C Em[Juv,,, In Y + B, + H,,J + (E2R)-l 

m=l 
as q + m ,  ( A I 6 )  

m 

m = l  
x [Juel In Y + BuWl +El] + O(ER)-l as Y -+ 0. (A 17)  

The skin friction law as given by (A 14) is 

In  relations (A 16)-(A 18) the first-order terms are similar to those of Millikan 
(1939) and Yajnik (1970). Further, these relations show that the incompressible 
turbulent boundary layer has logarithmic terms to order (E3R)-' in contrast to 
compressible flow, when logarithmic behaviour is observed for lowest order 
terms. 
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The results (A l6)-(A 18) can be written in the classic well-known forms 

{E[Alnr+H] as r-fco, (A 19) 

\U,,+E[AInY+B] as Y- tO ,  (A 20) 
U N  

(2/C,,)-t = A In [RA(&Cfo)*] + H - B, (A 21) 
where 

m 

A = x Em-lJ,,m + (E3R)-' Jut,, + . . . , 
m = l  

(A 22) 
m 

m = l  

m 

m = l  

H = x Em-1Hu8m + (E3R)-' I?,,, + . . . , 

B = x E ~ - I ( R ,  + H,,,) + (E~R)-'(& + Buv,) + . . . . 
These results show that the classical forms of the law of wall (A 19), velocity 
defect law (A 20) and skin friction law (A 21) can describe the effects of lower 
Reynolds number provided t'hat the constants in these classical laws are treated 
as functions of Reynolds number according to the above-mentioned expressions 
(A 22). In  these expressions the last term shows that the effects of pressure 
gradient on the turbulent boundary layer are of order (E3R)-'. In the above 
analysis the constants JuVm, HuUm, B,, etc., are left unspecified. This is because the 
present work deals with an underdetermined set of equations of mean motion, 
i.e. without a set of closure hypotheses. 
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